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SOLUTION THEOREMS IN PROBABILISTIC PROGRAMMING:
A LINEAR PROGRAMMING APPROACH

by
A. Charnes, M. J. L. Kirby, and W.M. Raike =

Introduction

For some years research on solution theorems in probabilistic pro-
gramming has been dormant. The obvious consequences of formal similar-
ities to deterministic mathematical programming problems had been rapidly
exhausted by researchers., Currently, however, .the deeper study which was
taking place during the "dormant period" has begun to produce results, On the
one hand theorems characterizing optimal classes of stochastic decision
rules for various general chance-constrained problems have been obtained.
(See 11, 12, 137). On the other hand, a great amount of effort has been
expended on the special class of problems called linear programming
problems under uncertainty (Cf. [2,3,4,5,6,10,16,17,18]), usually 2-stage
and under still more special assumptions.

The general objective of these specializations has been to attain results
and thereby to gain insight and technique to reapproach more fruitfully the
more important and general but more recondite probabilistic programming
problems, To this end, few abstractions or devices, from finite~dimensional
Banach spaces {{3]) to the Kakutani fixed-point theorem ([5]) appear to have
gone untried, except, perhaps, the ancient one of study and correlation of
the existent results of other researchers.

It is the purpose of this paper to provide some such correlation and a
redirection so that these simpler probabilistic programming problems may be
overcome in all generality with new,simpler methods which offer some pro-

mise of extension to the more involved chance-constrained (and other

#*Northwestern University
#*%Dalhousie University
#*%% University of Texas and Northwestern University
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probabilistic) models. In so doing, we have been able to obtain significant
extensions of past results as well as other new results which exhibit the
power of this "Hessenberg' (here linear programming) as opposed to the

previous "Kleinjan" L) approach.

Notation and Problem Statement

We begin with the 2-stage linear programming under uncertainty

problem, which we write as follows: Determine, if they exist, a vector %,

and a vector function xz(bz) which minimigze

m ¢ %, + Ecy%, (by)
subject to Anxl = l::1
gyt Ag%y(by) = b,

xp#,(by) 20

In (1), s €y and bl are vectors of known constants, All' AZl and A‘?‘z are
known constant matrices, and 1:»2 is a vector of random variables with a
known joint distribution function, The E operator denotes expectation,

and the constraints involving *, (bz) are required to hold with probability
one. Juxtaposition of vectors or matrices indicates an inner product or

matrix multiplication; whether vectors are to be row or column vectors

i "Klein" = elementary mathematics from a higher standpoint; "Hessenberg' =
higher mathematics from an elementary standpoint,
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N L]

will be clear from context. When needed, a superscript T will denote
transposition, and for a vector y we will use |y| to represent
(lyylseeesly 1) anormof y will be written fyll . Itis a fundamental
assumption of L p.u.u., which we dub for convenience the '"consistency"
assumption, that for any x, 2 0 satisfying Allxl = b1 » there is an xz(bz)
satisfying the "second stage' constraints with probability one. To conform
to past definitions (3) we specify the domain of definition of X, to be Do s
the convex hull of those subsets of Euclidean m-space which are assigned
positive measure by the distribution of bZ'

To orient (1) in the framework of chance~constrained programming
we note that the system Anx;1 = b1 may be considered to arise as the
deterministic equivalent of chance constraints in which X is to be chosen
as a zero-order, or constant, decision rule.

Alternative Formulations

In {1] and later in 7], Charnes, Cooper and Thompson showed that
(1) could be reduced to a deterministic "constrained hypermedian'! problem
involving x, alone, with "constrained medians' as the most important
special type. The constrained hypermedian problem obtained there, which

is equivalent to (1), is:

e s # max #
(2) minimize (c1 - CZAZZ AZl)xl +E[ 8=l,. .., K ws(Azz(.Amx1 - sz) ]
subject to Allxl = bl
x; z0

In (2}, Aﬁz is a generalized inverse of AZZ ;-I and the vectors w are

i For the definition of 2 von Neumann-Rao generalized inverse and a summary

of some of its properties see [8] and [9].
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the K extreme points of the convex polyhedral set defined by the constraints

wP

n
2
v,

where the matrix P =1~ Agz AZZ is the projection onto the null space of Ayy +
The computational {not theoretical) usefulness of (2) may be limited, since
one might well require an enumeration of all the w 8" There are, however,
a number of cases in which such an enumeration is not required.

A case of particular importance for economic theory (and also
possibly for solution approximations in more general situations) is that in
which, a priori, a linear programming problem for the first-stage gives an
optimal solution to the 2-stage problem, We present a simple sufficient

condition for this as the following theorerm.

Theorem 0: ¥ c, is in the range of the transpose of A,, (i. e., if
# o
CZAZZ =Cy 0 50 that ¢

optimal x

2 is a linear combination of the rows of .Azz) then an

) San be found by solving the linear programming problem



. . #
(3) minimize (cl «C AZZ. 21):: + const. (= Ec 2#2 bz)
subject to Ay* = b1
xl z 0

. # - #
Proof: Since CZAZZ AZZ c, we have czxz(bz) = CZAZZ Azzxz(bzl. 80

the second stage constraints imply ;:hat for ‘any feasible xZ(bz) {and we have
assumed that one exists) czxz(bz) = cZAjz (1::2 - A21x1). Taking expectations
shows that the functional in (1) becomes that of (3), and the consistency assump-
tion means that the second-stage constraints in (1) are redundant.

This is clearly one case in which no enumeration of extreme points is
required, for (2) simply reduces to {3). Also, the theorem is particularly
interesting when Azz is specialized to be square and nonsingular; it is
then a simplification of previous results. (See [3], for instance.)

Another important such case is the "constrained median" type, which

we render here as

(4) minimize c;x; + o E[bz - Alell
subject to Anx1 =
xl 20 ,

It can be assumed with no loas of generality that, in (4), o > 0. We shall
always assume,both here and in (1) and (2), that the system Allxl = b1 is
consistent,

The terminology '""constrained medians' is natural in the light of the
" absolute value in the functional of (4); for any random variable with a

finite expectation, the median is the center about which the first absolute



mornent is minimized.

Wets, in [2] and [3], studied the special case of (1) in which
AZZ = (I, -I), and (for unfathomable reasons) called this the "complete”
problem. But he did not observe the connection with ""constrained medians. "
We summarize in Theorem 1l below the relationship between the two problems;

for reference we set forth the "complete problem' as:

e s e + -
{5) minimize ¢x, +E [czy (bz) + C4¥ {bz)]
subject to A%y = bl

+ -
Alel +1y (bz) -1y (bz) = b2 w. ps 1
xIEO

-+ -
y (b)iy (b)) 20 w.p.l

It is assumed in {5} that <y + Cy > 0 and, of course, that Allxl = bl is
consistent.

Theorem 1. Any "complete problem' (5} can be represented as an equivalent
"constrained median" problem (4), and conversely.

Proof: Set o = %—(cz + c3) andc=c¢, - %-(c?_ - c3) A Then since

1 21
+ -1 + - 1 - + .
¢y tey = 5 (CZ + c3)(y +y )= 5 (cz - CB)(Y -~y ), using the
constraints in (5) we obtain

+ - + - 1
¢ tEfe,y tey 1= aBEly +y Jtex + 3{c,

Also, since C, tcy > 0 an optimal solution must clearly have y+y- =0

- C3) Ebz .

so that y+(b2) +y (bz) = lbz - A21x1] at an optimum. Thus the functional
in (5) becomes (dropping the constant term) Xy + ry E]b2 - A21x1| . a8
asserted.

Conversely, taking ¢, = Cy = and ¢ = ¢, {4) leads immediateiy to (5).

This completes the proof.
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Having established Theorem 1, one may legitimately inquire as to how
much more general than the constrained median problem the general
L. p. u. u. problem (1) is, We shall show as a preliminary result in this
direction that under very mild conditions on the distribution of bZ the con-
sistency assumption in (1) implies that the matrix AZZ has a right inverse
and therefore full row rank.

Theorem 2: Let (1) ¢atisfy the consistency assumption. I the domain Do

contains 2m {where m is the number of entries in bz) points
{bék), ﬂék): k=1,...,m} such that, for each k, .l;(k) = b(k) + Ak . for

some real Ak+ 0 (in which e is the k-th unit vector), then AZZ has a

k
right inverse.

Proof: Let A be the diagonal matrix formed by the A Kk values and let

%, be any solutionto A_ . x, = b, x, 20, Since there exists a feasible

1 111 ) it |

(k) (), _ - 1 (k) - (k)
rule xz(bz) , we have b’ - Aazm:z(b2 ) = Allxl =b - Azzxz(b ) for
all k. Letting H be the matrix whose k-th column is xz(b(k))- xz(b (k)),
subtraction yields the relation

A-A,,H=0.

22
But since Ak # 0, A—l exists; thus AZZH A_l = I, s0 that

H A -1 is a right inverse for AZZ which completes the proof.
It should be noted that Theorem 2 has an obvious generalization to the

n-stage problem of linear programming under uncertainty.

Existence Theorems

In [5], Williams (with no acknowledgement of [1] or [7]) studied
existence questions for the simple case 'All =0, bl =0, AZZ = (I, -I) , with
special assumptions on the distribution of b,, by means of fixed-point
methods; the results obtained there are special cases of those we shall
give here. Further, we shall give, in our generality, an explicit

characterization of what Williams termed the "insoluble finite'" case, in which
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the objective function has a finite irfiruum but where there is no finite point at . .-...

which the infimum is attained.

We proceed to establish necessary and sufficient conditions for the
objective function in the constrained median problem (4) to have a finite
infimum. For notational convenience we shall drop the subscript and use
x in place of x,, and will let h(x) = cx + o E!b2 - Ale! .

We shall assume that 1:)2 bas a finite expectation; the reason for this

is expressed as Lemma L

Lemma 1: h(x) is finite for each x if and only if E !bzf is finite.
Proof: Elementary inequalities on the absolute value yield the facts that

£la,xbrib, L= Ha, xl - Ib, | 1= [b

2 = Agpel = Mol + 1Ayx] .

Applying the expectation operator {which is order-preserving), we

obtain
(6) (ex = v A, x]) + o Elb, | =h(x) < (ex+ wla,x]) + 2 Elb, ]

which establishes both sufficiency and necessity.
Theorem 3: There is a finite infimum h for h(x) over the set

R = [x:Anx = bl’ x z 0} if and only if there exist vectors w and v satisfying

(7) -~ WA, tVA, Sc

w| < a.

Proof: By virtue of inequality (6), it ie enough to show that cx + a}Azlx_l has

a finite minimum. for all x in the set R if and only if there exist vectors
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w and v satisfying the system (7). To do this, we note that the problem

(8) minimize cx + o !AZIx!
subject to A in* = bl
xz0

can be rewritten equivalently as the consistent linear programming problem

{9) minimize cx + g (y+ 4 y" )
subject to Anx = b1
+ -
Yy ~Yy =~ A21 x =0
+ -
X v,y 20 .

The dual to (9) has as its objective function maximization of the
functional vbl; more importantly, the dual constraint set is exactly the
system (7). Since we have assumed that the constraint set of (7) is consistent,
the dual theorem of linear programming (see {14], vol. I, p. 190} immediately
yields the desired result.

We now turn to an elucidation, in all generality, of what was termed
in the special case of [5] the "insoluble finite' case. We assume the feasible
region R is nonempty, h(x) has a finite infimum over R, and yet there is
no finite x which yields this infirnum. Since h(x) is clearly continuous, the
only way this can happen is for there to exist a sequence [xn} of points in R,

with 1x®]] - © as n =« , such that

lim h{x") = inf h(x) = &k .
n=—w xeR
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It is clear that this case need never occur in practice since the
set R can always be regularized by adjoining the constraint jExj =2U,

where U is some large (possibly non-Archimedean) upper bound.

We will now show that there exist vectors %, x o such that

lim h{tx +x) = lim h{(x") = inf h(x) =& ,
© xeR

o> n — e

where ”xn | oo as n— o and x" e¢R for all n. That is, there exists a
displaced ray tx + X contained in R along which the limiting behavior of
hitx + xo) as t become infinite imitates the lirniting behavior of h(xn) asg
n becomes infinite.

We shall prove the following theorem via a sequence of lemmas; for
notational simplicity we drop the subscripts and write A in place of AZ!
henceforth.

Theorem 4;: Let {x :x"¢R, n=12,... } be a segquence such that
lim h(xn} =x§:nIf{ hix) =h , and suppose that h(x) >h forall x¢R., Then

n —w

there exist vectors x and x_ such that

lim h(tX +x ) = lim h(x™) = inf hix) =% . Furthermore,
f > o n-—o xeR

cX+oafAx] =0, and x eR and t§+xoeR forall t20 .

Lemma 2: Let P be an m x k matrix and let P:: R Po be m-vectors for
n=1,2,... suchthat P, ~P_. If the systems PA" = p§ » AP20 all have
solutions, then there is a solution A to P\ = Po with A 20,

Proof: Suppose no such )\ exists. Then by the Farkas lemma there is an

m-vector u such that uPo <0 while P20, Butforalln,
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0 = (uPN\" = u(PA") = uPy . This is impossible since uP} ~uP <0 ,
proving the lemma.,
Lemma 3: Let Jo = {j ::::;1 is bounded for ali n} . There is a subsequence
of {xn} which we shall also denote by [xn] such that x? - i‘i for some
":Ej =0 forall j in J  and having x;r"l > x? for all j not in JQ . Further,
the subsequence is such that the sign pattern of the a.ixn does not change with
n.
Proof: The proof is trivial since the vectors x" have only finitely many
components. Henceforth we assume {x"} itself has the properties attributed
to the subsequence; this causes no loss of generality.
Lemma 4: Define vectors " and ¥ as follows: Let 2" have entries
x;l for j¢ J, and zeros elsewhere; let X have entries ;j for jeJ  and
zeros elsewhere. Let 8, = sgn alx® . Then
ex™ + !:xlen] -c®Er+%) - iEoeisiai(SEn +x) -0 .

n

n
Proof: x

- % = %X = 0 by construction, so that
. P op - . -
a.lxn-al(x +x}) -0 and cxn-c(xn+x)-»0. Also

sgna' (K" +x) = s; if a’x" b 0, andif a'x" - 0 then

a’ (€™ +%) - 0 as well. The result follows.

Proof of Theorem: Without loss of generality, we can take as {xn} not only
the subsequence obtained in Lemma 3, but may replace this by a further
subsequence having the property that ex + o ]Axn] converges to some
limit which we denote by a. (This is true since cx" + o ]Axn | must stay
bounded by virtue of inequality (3))..

In addition, we may assume that either ]a.ixnl - ®or alx®
converges to some finite limit, say Ei ;letI ={i: al® o Ei} .

Now for the sequence %~ defined in Lemma 4,
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alg® o 4+ ® according as a,ixn does, and a igD -»El'i - a.i?f when
alx® ‘&i . Finally, c%" +a|AX"| »a - ;‘3 aisiai;:- »
where a is as defined above.

Let us now apply Lemma 2 to the following system, where ej

denotes the j-~th unit vector:

10 T aln, =4, -alx iel
oo jgr 31 f ' °
O
i -
jéisax-xnﬁ-l , 1e}1°
o]
b ( +Zasar)h =a-Yasa‘x
55“0 joL T ritd L T r
CDaped)y = deAE
i da,
hn+i'hj20'

I.emma 2 guarantees from the behavior of the =™ that there is a

solution X to this system. Let us now define fj = i‘j for j¢ J, and

%x,=0 for j eJ_ in order to obtain a vector % having £°- %20 for n

sufficiently large; in fact % X = for jéJ’o . The x, promised in the
statement of the theorem can now be defined as x, = F+x.

Now by construction of X (via (7))}, the vectors £%. % are all
nonnegative and satisfy al E"- %) -0 for ic I sia.i E™ - %)== for
i 6#10 , and (™ - %)+ z aisiai (" - %) =0. We can therefore apply

i A
Lemma 2 a second time to guarantee the existence of a solution A to the

system:
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; i ‘ .
{11) % a.h =0 , iel
. i o
K §0, é
T osash, =k ,, =1 igl
. 1 +i ' o
JéJo’ } n
v {e. +Earsrajr)}“j =0
jd3,
L A2 )N, =0
. 1
34‘]'0 ) ) |
RJ’ kn-{-i 20 .

L)

Let us define the vector # by setting :?.j = ij for j G}Jo and %, =0 for
j GJO . The vector % thus defined has the properties that a'x=0 for

iel , sa'x>1 for i4I , and that cX + @|Ax| = ckX + Ses.2'x= 0
o 1 o] i 11

x =0 so tha.tAll{tx+ xo)-'iAllxo =d for

as asserted by the theorem; also All

each t = 0.
We can also conclude from this construction that

a.i (tf + x_) =a'x =d, for iel ; s.a.i (tx + x ) =tn.aiﬁ+s.aix
(o) o) i o i o i i

which tends to infinity with t for i QIO ; and

~ ~ - [ iA i -
et +x ) + o [A(tx + xo)! = t{cx + Zoys.a x) +cx  + 21 asax = cx  +
Eaisialxo = a for t sufficiently large to stabilize the sign pattern.
i
The proof is now finished as an easy consequence of the following

theorem which serves to establish that tli:n h{tz + %) = lim h(x™) =% .
- o n —<«

n -« w n ~+w%

Theorem 5: lim h(x") = lim [ex™ +. glaisi %" - Eb;)] +
i
)

T a Elb, ~-d | .
iGIOI. 1 1
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1 b.<ax

in for i¢ I, andalln

Proof: Let xi.rfbi) = Y0, b, 2a%x
i

Now Elb, - a’x"| = E[(b; ~ a’”)(1 = x, (b,))] +
E[(a%" - b)) %, (b))]

_ in in, o i n
= [Ehi - 2E (bixin(bi))]+ax [P(bi <a'x) P(bi zax)].

But nlimm E(bi xin(bi)} = Ebi, si =4+, and the second term on

the right gets as close as desired to sia.lxn for n sufficiently large.

Thus lim Elb -a xnl = si(alxn- Ebi) for i#Io ; for ieIo we

n -
have lim a'x™ =d., so that for such i, lm Elb -a'%"| = E|b, - d.]
n - 1 n —ew 1 1

This proves theorem 5.

It should be emphasized that theorem 5 provides an explicit
characterization of the limiting value of h(xn}. We can also use theorem 5
to obtain the following result which further delimits those x which might
be eligible in theorem 4,

Theorem 6: A necessary and sufficient condition that

lim hitx + x ) ir;foh(tx + xo) is that cx + Ot[Ax’ =0,

t =

Proof: Assume | x| =1 since the conclusion is trivial for x = 0 and
cx + o[Ax| is positive homogeneous. Theorem 5 and the fact that E{b]|

finite imply that 1:1im h(tx + xo) exists and is finite {call the limit v) if and
-t 09

only if cx + a [Ax| = 0. Now necessity is obvious from theorem 5; to prove
sufficiency, let ¢x + 4lAx] = 0, and suppose there is a t such that

inf h{tx + x ) = h(t x + X }o Since h{tx + x ) is a convex function of t,
tz0
h(*é-[tox + xo] + L [tx +x IDE: — [ hit x+xo) + hitx +x°)] for every t.

1

But lim h(tx+x}=y 11mh(§-tx+ >

t-‘CO t 2o

>tx +xo) » 80 that

1 .
y < —z-h(tox+xo)+ 3Y:, or y=shitx+x). Since hit x+x_ ) =y by
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definition of to’ we have shown

inf hitx +x J=h{t x+x )=y = lim h(tx+x_) when t_ exists; if
t20 o o o £ = o o
there is no such t_then a fortiori inf h{tx+x )= limh{tx+x ).

o —— o o
t=0 t »e

As prelude to a final result in this direction we note that, since h(x) is
convex, it has partial derivatives almost everywhere. It is of interest to

establish asymptotic formulae for the radial directional derivative.

Lemma: lim d hitx) = cx + o |Ax|

¢ dt

Proof: Consider numbers 0 <t1 <t2 <t3 . Let al =
h(t3x) - h(tzx)

2 t3-tz

Since h is convex, it follows easily if d% hi(tx) existsat t = tz that

h(tzx) - h(tlx)
and

-4

A

d
- [ 3
Al = & h(tzx) < Az. However, if we let 1:1, tZ' 1:3

t2 - tl and t3 - t, stay constant, it is immediate from (13) below that Aland A

both approach the limit cx + @ |[Ax|. The conclusion follows.

« o in such a way that

2

We wish to emphasize at this point that this "knife-edge" infinite
displaced ray case can never appear as the solution to a practical problem.
Rather it would exhibit an inadequacy or unrealistic formulation of the
model. We have developed these results solely for the sake of completeness

of analysis,
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Probabilistic Interpretations and Incremental Formulae for hix)

We now give expressions in terms of the probabilities of the
various b versus Ax events for the increment of h(x) (i.e.
h{x + g) - h{x)).

First, on inspecting figure 1 below, we note that, for ¢ > 0,

e u<a
fu)= Ju-(a+e)f-|u-al=4{ec+2(a-u , asu<a+e
-8 uza+e

fiu)

+e

Figure 1

Thus, if v is a random variable with finite expectation,
Eu(lu- (@+e)|-|u-al)=e[Pu<a)-Pluza+e)]+
[e+2a-2(a+ecb(e))]Plasu<a+e)

for some 0= 8(e} =1 by the mean value theorem. In other words,

(12) Eu(]uw(a+e)]— lu-al)=¢e[Plu<a+e)-Pluza+e)

-280(e)Plasu<a+te)].

But
hx+€)-hix)=ce+aE({|b-Ax-AE]| - |b- Ax]) ,

so if we use (12) we get, using P(b z Ax) to denote the vector whose
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components are P(bi z a.lx), where a1 is the i-th row of the matrix A:

(13) hix+ £) - h(x) =cE+x DAF)[P(b<A(x+8)) - P(b2 A{x + £))
-2D(6(lAg N)PAXSb<A(x+E)].

Here D(y) denotes the diagonal matrix whose diagonal consists of the
components of the vector y and 8(|AE[) = (91( !al!? Pyeuns em( la™ e 1)
with 0 = Bi{ !a.i £1)=1, Thus we have an expression for the increment
of h(x), and thereby an expression for any possible directional variation,
in terms of the probabilities of various events.

Theorem 6: If the joint distribution function for b is continuous, the
function h(x) is continucusly differentiable. The gradient of h(x) is

represented explicitly as;

(14) v hix) = ¢ + w{x) A, where

w; (x) = n, [2F,(a’x) - 1]

Proof: In (13), let € = tej where t is real and e:j is the j-th unit
vector. The j-th cormponent of v h{x) is then obtained as
hix + ¢ eJ.) - h{x)

1im = ¢, + L .a% 2F, i:1:--1.
t -0 t J ia”[ i@ - 1

This is the desired representation,

Corollary: If the distribution of b admits a continuous density function,
or equivalently, if the distribution function is continuously differentiable,
then the Hessian (the matrix of second partial derivatives) of h{x) exists

and is continuous. The jk-th entry is represented explicitly as
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(15) 2Zo, aJi. aif aln)
where fi is the marginal density of bi .

It is possible to employ (13), (14) and {15) constructively to obtain
efficient solution algorithms for the problem (4) and thereby for (5). We
- remark also that (14) is easily derived from the work in (2] and [5]. It
is important to note, however, that (13) is valid for the general cases of
discontinuous distributions. This result will be applied in further work
elsewhere,

A major difficulty in applying existing nonlinear programming
techniques to {4) directly is that multiple numerical integrations are re-~
quired.to calculate the value of h(x) for any particular x. A notable
exception is the projected gradient method of J. B. Rosen (see [20])which
requires only knowledge of the gradient at each step. Another possibility,
suggested during a conversation by A. V. Fiacco in regard to the SUMT
and related sequential unconstrained methods (see [21], [22], [231),is
that of performing either first-order or second-order gradient descent
procedures (for a suitable unconstrained pemalty function) only by refer-
ence to the gradient and inverted Hessian and not to the objective function
value. Optimal step lengths for each {possibly mapped) gradient move can
be calculated not only by explicitly minimizing the objective function along
the desired vector, but rather by requiring that successive "moves! be
orthogonal. Such a procedure -appears to be novel, and will be reported
on in more detail and with greater generality elsewhere,

Solvability Results for the General Problem.

The general N-stage linear programming under uncertainty
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problem (cf. 1], [6], [7], [11], [16]) can be written:

N
(16) minimize ¢;x, + E (j=Z2} cjxj ('bz, vaes bj))
i
Su.b_]ect to Ail x1+J=§; Aij xj (bzao-- :bj) = bi, 1=1’---;N
Z E

In (16) the vectors bl’ CyreeesC and the matrices Aij are
known constants; bZ’ e ’bN are random vectors with a known joint dis-
tribution; and the decision rule xj, for each j, is to be a function only of
the random variables up to "'stage" j, or equivalently is to be a constant

function of bj 41 through b The constraints which involve random

N
variables are required to hold with probability one; we assume that the
structure of the problem is such that, for any Kyp o ,xj satisfying the
first j constraints in {16), there exists a decision rule xj+l(b teas ’bj+1)
satisfying the (j+l)-st constraint (and the nonnegativity restrictions) with
probability one. We shall refer to this as the "consistency assumption.
Ve must specify the domain of definition of the functions xJ. ; again
following [3], we suppose that this domain Do is the convex hull of those
subsets of EN which have positive probability under the distribution of
the bi.

We note again here that the consistency assumption implies that
the matrices Aii all have full row rank when the conditions of theorem 2
hold.

In [27] and [28], Wets established that there exists a convex pro-

gramming problem which is a deterministic equivalent for the N-stage

problem (in which the solution set for X, is a convex polyhedron); this
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result (obvious from (2} for N =2) was extended by Murty in [10] where he

showed that the nonzero components of an optimil % correspond to
linearly independent columns of the matrix : u .
Ant
Elaborate constructions, including the theory of polar cones, were
used to obtain these results; we now show how they follow in a trivial

manner simply by looking at (13) fromn a new point of view.

Theorem 7: I there exist any optimal decision rules xi‘,. .s ,x;;

whatever for the N-stage problem (16), then there exists an optimal %y

whose nonzero components correspond to linearly independent columns
A
of the matrix i

»

bno.

nl
Proof: Consider the optimal rules x}k (bZ" vos bj) forj=2,...,n. Since

there exists an x’f such that
* N *
Ailxl = bi - j:zz: Aijxj (bz,.. . ’bj) fori=1,...,N, and since

xf is a constant, the right-hand expressions must alsc be constant

functions of the random variables involved! Denote the vector of these
constants by d*, and consider the linear programming problem (which

has a finite optimal value) given by:

(17) minimize %
Aﬂxl:di*, i=1...,N,
-3
x1 =0

In {17), of course, dl* = b, . Now there exists an optimal solution '551

to (17) which is a basic solution, i.e,, whose nonzero components

correspond to linearly independent columns of the constraint system,
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Also, (il, xX, ... ,X;:I) constitute an optimal solution to (16). To see this,

2
note that the difference between the functional values in (16) given by this

. . . . % E % .
solution and the original solution (xl RRRNE S ) is CyFy ~ €% - Since

the original solution is optimal for (16) we have CI;I - clxl* 2z 0, and since

- . — "
x, is optimal for (17) we know that 4%y < cXs

It may be possible to use the above observations as the basis for

this completes the proof.

an efficient algorithm for (1), the reason being that in order to find dg‘ it

is not necessary to know the entire function xg (bz); d; = bz - Azzx; (bz)

*
2

will be particularly powerful if efficient methods can be found for determin-

is known as soon as we know x, for a gingle value of bz. This approach

ing xz* (b,) for some b, , either explicitly or by means of approximations.
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Appendix

We state here without proof (proofs may be found in [141) three
theorems which are of key importance in the theory of linear programming.
Our lemma 2 is a restatement of part of the Farkas-Minkowski theorem
in its homogeneous form; the key fact used in our proof of theorem 5
was the LIEP theorem. The Opposite Sign theorem is the heart of the
proof of the Farkas-Minkowski theorem, and provides the theoretical
basis for computational procedures for constructing basic solutions from
nonbasic ones while not worsening the objective function value ; see [24].

It should be noted that all theorems may be proved without
recourse to topological properties of the real numbers and are thus valid
for vector spaces over arbitrary ordered fields.

A. Farkas-Minkowski Theorem: The intersection of a finite number of
{possibly displaced) half-spaces, when a bounded set, is the convex
hull of a finite number of extreme points.

Let L. ={\ : P\ = P_» A 2 0}; here and in the following let X and «
be n-vectors, P be m-by-n, and Po. be an m-vector. L is thus

a polyhedral convex set,

B. LIEP Theorem {Linear Independence by Association with Extreme
Points): A # 0 is an extreme point of L if and only if the nonzero
coordinates (components) of N\ correspond to linearly independent

columns of P,

C. Opposite Sign Theorem: L is spanned by its extreme points if and
only if for every o 0 such that Pa = 0 it is necessary that one
component of & be positive and that another component be negative.

We remark here that the Opposite Sign Theorem is also true in cer-

tain infinite-dimensional cases (specifically, in "generalized finite
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